Пропустить навигацию

Лекция 2. Базовые понятия дисциплины "Теория информации". Способы измерения информации. Канал связи. Шум. Кодирование.

Виды информации

Информация может быть двух видов: дискретная (цифровая) и непрерывная (аналоговая). Дискретная информация характеризуется последовательными точными значениями некоторой величины, а непрерывная — непрерывным процессом изменения некоторой величины. Непрерывную информацию может, например, выдавать датчик атмосферного давления или датчик скорости автомашины. Дискретную информацию можно получить от любого цифрового индикатора: электронных часов, счетчика магнитофона и т.п.

Дискретная информация удобнее для обработки человеком, но непрерывная информация часто встречается в практической работе, поэтому необходимо уметь переводить непрерывную информацию в дискретную (дискретизация) и наоборот. Модем (это слово происходит от слов модуляция и демодуляция) представляет собой устройство для такого перевода: он переводит цифровые данные от компьютера в звук или электромагнитные колебания-копии звука и наоборот.

При переводе непрерывной информации в дискретную важна так называемая частота дискретизации ν, определяющая период (T = 1) между измерениями значений непрерывной величины.

рис. 1. Виды сигналов

Чем выше частота дискретизации, тем точнее происходит перевод непрерывной информации в дискретную. Но с ростом этой частоты растет и размер дискретных данных, получаемых при таком переводе, и, следовательно, сложность их обработки, передачи и хранения. Однако для повышения точности дискретизации необязательно безграничное увеличение ее частоты. Эту частоту разумно увеличивать только до предела, определяемого теоремой о выборках, называемой также теоремой Котельникова или законом Найквиста (Nyquist).

Любая непрерывная величина описывается множеством наложенных друг на друга волновых процессов, называемых гармониками, определяемых функциями вида A sin(ωt + ϕ), где A — это амплитуда, ω — частота, t — время и ϕ — фаза.

Теорема о выборках утверждает, что для точной дискретизации ее частота должна быть не менее чем в два разы выше наибольшей частоты гармоники, входящей в дискретизируемую величину.

Примером использования этой теоремы являются лазерные компакт-диски, звуковая информация на которых хранится в цифровой форме. Чем выше будет частота дискретизации, тем точнее будут воспроизводиться звуки и тем меньше их можно будет записать на один диск, но ухо обычного человека способно различать звуки с частотой до 20 КГц, поэтому точно записывать звуки с большей частотой бессмысленно. Согласно теореме о выборках частоту дискретизации нужно выбрать не меньшей 40 КГц (в промышленном стандарте на компакт-диске используется частота 44.1 КГц).

При преобразовании дискретной информации в непрерывную, определяющей является скорость этого преобразования: чем она выше, с тем более высокочастотными гармониками получится непрерывная величина. Но чем большие частоты встречаются в этой величине, тем сложнее с ней работать. Например, обычные телефонные линии предназначены для передачи звуков частотой до 3 КГц. Связь скорости передачи и наибольшей допустимой частоты подробнее будет рассмотрена далее. Устройства для преобразования непрерывной информации в дискретную обобщающе называются АЦП (аналого-цифровой преобразователь) или ADC (Analog to Digital Convertor, A/D), а устройства для преобразования дискретной информации в аналоговую — ЦАП (цифро-аналоговый преобразователь) или DAC (Digital to Analog Convertor, D/A).

Хранение, измерение, обработка и передача информации

Для хранения информации используются специальные устройства памяти. Дискретную информацию хранить гораздо проще непрерывной, т. к. она описывается последовательностью чисел. Если представить каждое число в двоичной системе счисления, то дискретная информация предстанет в виде последовательностей нулей и единиц. Присутствие или отсутствие какого-либо признака в некотором устройстве может описывать некоторую цифру в какой-нибудь из этих последовательностей. Например, позиция на дискете описывает место цифры, а полярность намагниченности — ее значение. Для записи дискретной информации можно использовать ряд переключателей, перфокарты, перфоленты, различные виды магнитных и лазерных дисков, электронные триггеры и т. п. Одна позиция для двоичной цифры в описании дискретной информации называется битом (bit, binary digit). Бит служит для измерения информации. Информация размером в один бит содержится в ответе на вопрос, требующий ответа “да” или “нет”. Непрерывную информацию тоже измеряют в битах.

Бит — это очень маленькая единица, поэтому часто используется величина в 8 раз большая — байт (byte), состоящая из двух 4-битных полубайт или тетрад.

Байт обычно обозначают заглавной буквой B или Б. Как и для прочих стандартных единиц измерения для бита и бай- та существуют производные от них единицы, образуемые при помощи приставок Кило (K), Мега (M), Гига (G или Г), Тера (T), Пета (P или П) и других. Но для битов и байтов они означают не степени 10, а степени двойки: 

Приставка Обозначение Двоичные приставки Десятичные приставки
Кило к, k 210 = 1024 103 = 1000
Мега М, M 220 = 1 048 576 106 = 1 000 000
Гига Г, G 230 = 1 073 741 824 109 = 1 000 000 000
Тера Т, T 240 = 1 099 511 627 776 1012 = 1 000 000 000 000
Пета П, P 250 = 1 125 899 906 842 624 1015 = 1 000 000 000 000 000

Например, 1 KB = 8 Кbit = 1024 B = 8192 bit, 1 МБ = 1024 КБ = 1 048 576 Б = 8192 Кбит.

Для обработки информации используют вычислительные машины, которые бывают двух видов: ЦВМ (цифровая вычислительная машина) — для обработки дискретной информации, АВМ (аналоговая вычислительная машина) — для обработки непрерывной информации. ЦВМ — универсальны, на них можно решать любые вычислительные задачи с любой точностью, но с ростом точности скорость их работы уменьшается. ЦВМ — это обычные компьютеры.

Каждая АВМ предназначена только для узкого класса задач,  например, интегрирования или дифференцирования. Если на вход такой АВМ подать сигнал, описываемый функцией f (t), то на ее выходе появится сигнал F (t) или f '(t). АВМ работают очень быстро, но их точность  ограничена  и  не  может  быть  увеличена  без  аппаратных  переделок.  Программа для АВМ —  это электрическая схема из заданного набора электронных компонент, которую нужно физически собрать.

Бывают еще и гибридные вычислительные машины, сочетающие в себе элементы как ЦВМ, так и АВМ.

Кодированием, например, является шифровка сообщения, декодированием — его дешифровка.

Процедуры кодирования и декодирования могут повторяться много раз. Ошибки при передаче информации происходят из-за шума в канале (атмосферные и технические помехи), а также при кодировании и декодировании. Теория информации изучает, в частности, способы минимизации количества таких ошибок.

На рис. 2 изображена схема передачи информации.

Скорость передачи информации измеряется в количестве переданных за одну секунду бит или в бодах (baud): 1 бод = 1 бит/сек (bps). Производные единицы для бода такие же как и для бита и байта, например, 10 Kbaud = 10240 baud.

Информацию можно передавать последовательно, т. е. бит за битом, и параллельно, т. е. группами фиксированного количества бит. Параллельный способ быстрее, но он часто технически сложнее и дороже особенно при передаче данных на большие расстояния. Параллельный способ передачи используют, как правило, только на расстоянии не более 5 метров.

Базовые понятия теории информации

Информация — нематериальная сущность, при помощи которой с любой точностью можно описывать реальные (материальные), виртуальные (возможные) и понятийные сущности. Информация — противоположность неопределенности.

Канал связи — это среда передачи информации, которая характеризуется в первую очередь максимально возможной для нее скоростью передачи данных (емкостью канала связи).

Шум — это помехи в канале связи при передаче информации.

Кодирование — преобразование дискретной информации одним из следующих способов: шифрование, сжатие, защита от шума.

Общая схема передачи информации изображена на рис. 3.

Емкость канала связи без шума можно приблизительно вычислить, зная максимальную частоту волновых процессов, допустимую в этом канале. Можно считать, что скорость передачи данных может быть не меньше, чем эта частота. Например, при предельной частоте, равной 1000 Гц, можно обеспечить скорость передачи данных не меньше 1 Кбод.

Примеры каналов связи и связанных с ними предельных частот:

  • Телеграф — 140 Гц
  • Телефон — до 3.1 КГц
  • Короткие волны (10–100 м) —  3–30 МГц
  • УКВ (ультракороткие волны) (1–10 м)  —  30–300 МГц
  • Спутник (сантиметровые волны) — до 30 ГГц
  • Оптический (инфракрасный диапазон) — 0.15– 400 ТГц
  • Оптический (видимый свет) — 400–700 ТГц
  • Оптический (ультрафиолетовый диапазон) — 0.7–1.75 ПГц

рис. 3 Общая схема передачи информации 

Типичные современные каналы: телеграфный и телефонный. Перспективные, внедряемые ныне: оптоволоконный (терабоды) и цифровой телефонный (ISDN, Integrated Services Digital Networks) — 57–128 Кбод. В реальных оптоволоконных системах скорость гораздо ниже теоретических пределов (редко превосходит 1–10 Гбод).

Наиболее широко пока используются телефонные линии связи. Здесь достигнута скорость более 50 Кбод!

 

Способы измерения информации

Понятие количества информации естественно возникает, например, в следующих типовых случаях:

  1. Равенство вещественных переменных a = b, заключает в себе информацию о том, что a равно b. Про равенство a2 = b2 можно сказать, что оно несет меньшую информацию, чем первое, т. к. из первого следует второе, но не наоборот. Равенство a3 = b3 несет в себе информацию по объему такую же, как и первое;
  2. Пусть происходят некоторые измерения с некоторой погрешностью. Тогда чем больше будет проведено измерений, тем больше информации об измеряемой сущности будет получено;
  3. М. о. некоторой сл. в. содержит в себе информацию о самой сл. в. Для сл. в., распределенной по нормальному закону, с известной дисперсией знание м. о. дает полную информацию о сл. в.;
  4. Рассмотрим схему передачи информации. Пусть передатчик описывается сл. в. X, тогда из-за помех в канале связи на приемник будет приходить сл. в. Y = X + Z, где Z — это сл. в., описывающая помехи. В этой схеме можно говорить о количестве информации, содержащейся в сл. в. Y , относительно X. Чем ниже уровень помех (дисперсия Z мала), тем больше информации можно получить из Y . При отсутствии помех Y содержит в себе всю информацию об X.

В 1865 г. немецкий физик Рудольф Клаузиус ввел в статистическую физику понятие энтропии или меры уравновешенности системы. В 1921 г. основатель большей части математической статистики, англичанин Роналд Фишер впервые ввел термин “информация” в математику, но полученные им формулы носят очень специальный характер.

В 1948 г. Клод Шеннон в своих работах по теории связи выписывает формулы для вычисления количества информация и энтропии. Термин энтропия используется Шенноном по совету патриарха компьютерной эры фон Неймана, отметившего, что полученные Шенноном для теории связи формулы для ее расчета совпали с соответствующими формулами статистической физики, а также то, что “точно никто не знает” что же такое энтропия.

Телеграф — 140 Гц, телефон — до 3.1 КГц, короткие волны (10–100 м) —  3–30 МГц, УКВ (1–10 м)  —  30–300 МГц, спутник (сантиметровые волны) — до 30 ГГц, оптический (инфракрасный диапазон) — 0.15– 400 ТГц, оптический (видимый свет) — 400–700 ТГц, оптический (ультрафиолетовый диапазон) — 0.7–1.75 ПГц.